Aspire's Library

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations

MCA NIMCET Previous Year Questions (PYQs)

MCA NIMCET Complex Number PYQ


MCA NIMCET PYQ
If ${{x}}_k=\cos \Bigg{(}\frac{2\pi k}{n}\Bigg{)}+i\sin \Bigg{(}\frac{2\pi k}{n}\Bigg{)}$ , then $\sum ^n_{k=1}({{x}}_k)=?$





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2023 PYQ

Solution

Sum of Complex Roots of Unity

Given:

\[ x_k = \cos\left(\frac{2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right) = e^{2\pi i k/n} \]

Required: Find: \[ \sum_{k=1}^{n} x_k \]

This is the sum of all \( n^\text{th} \) roots of unity (from \( k = 1 \) to \( n \)).

We know: \[ \sum_{k=0}^{n-1} e^{2\pi i k/n} = 0 \] So shifting index from \( k = 1 \) to \( n \) just cycles the same roots: \[ \sum_{k=1}^{n} e^{2\pi i k/n} = 0 \]

✅ Final Answer:   \( \boxed{0} \)


MCA NIMCET PYQ
If $|z|<\sqrt{3}-1$, then $|z^{2}+2z cos \alpha|$ is





Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2019 PYQ

Solution


MCA NIMCET PYQ

A particle P starts from the point






Go to Discussion

MCA NIMCET Previous Year PYQMCA NIMCET NIMCET 2019 PYQ

Solution




MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

MCA NIMCET


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...